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    Chapter 15   

 Computational Identifi cation of Protein Kinases 
and Kinase-Specifi c Substrates in Plants 

           Han     Cheng    ,     Yongbo     Wang    ,     Zexian     Liu    , and     Yu     Xue    

    Abstract 

   The protein phosphorylation catalyzed by protein kinases (PKs) plays an essential role in almost all biological 
progresses in plants. Thus, the identifi cation of PKs and kinase-specifi c substrates is fundamental for under-
standing the regulatory mechanisms of protein phosphorylation especially in controlling plant growth and 
development. In this chapter, we describe the computational methods and protocols for the identifi cation 
of PKs and kinase-specifi c substrates in plants, by using  Vitis vinifera  as an example. First, the proteome 
sequences and experimentally identifi ed phosphorylation sites (p-sites) in  Vitis vinifera  were downloaded. 
The potential PKs were computationally identifi ed based on preconstructed Hidden Markov Model 
(HMM) profi les and ortholog searches, whereas the kinase-specifi c p-sites, or site-specifi c kinase–substrate 
relations (ssKSRs) were initially predicted by the software package of Group-based Prediction System 
(GPS) and further processed by the iGPS algorithm (in vivo GPS) to fi lter potentially false positive hits. 
All primary data sets and prediction results of  Vitis vinifera  are available at:   http://ekpd.biocuckoo.org/
protocol.php    .  
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1      Introduction 

 As one of the most important and well-studied posttranslational 
modifi cations (PTMs), protein phosphorylation takes part in regu-
lating a broad spectrum of biological processes such as signal trans-
duction and environmental response in plants [ 1 ,  2 ]. Protein 
kinases (PKs), as key regulators responsible for the biochemical 
reactions, modify their target proteins by chemically adding phos-
phate groups to specifi c amino acids, mainly including serine (S), 
threonine (T), and tyrosine (Y) residues [ 3 – 6 ]. In this regard, the 
identifi cation of PKs and PK-specifi c substrates is fundamental for 
understanding the regulatory mechanisms of protein phosphorylation 
in controlling plant growth and development. 

 Although the phosphorylation was discovered nearly sixty 
years ago [ 7 ], the identifi cation and classifi cation of PKs especially 
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plant PKs is still immature and full of challenge. In 1995, based on 
the conserved sequence and structural profi les of the catalytic 
domains, Steven K. Hanks and Tony Hunter performed a seminal 
study by classifying eukaryotic protein kinases (ePKs) into a hierar-
chical structure with four levels, including group, family, subfamily 
and single PK [ 8 ]. Using the same rationale, Manning et al. sys-
tematically identifi ed 130, 454, 240, and 518 putative PKs in 
 Saccharomyces cerevisiae ,  Caenorhabditis elegans ,  Drosophila mela-
nogaster , and  Homo sapiens , and classifi ed these PKs into 10 groups, 
134 families, and 201 subfamilies [ 9 ]. However, the classifi cation 
and annotation of PKs at the subfamily level is time-consuming and 
largely dependent on the manual curation. In this regard, the kinase.
com database only contained the annotation information for PKs in 
11 species after 10 years of efforts [ 9 ]. Recently, we developed a 
comprehensive database of EKPD (  http://ekpd.biocuckoo.org    ) 
for PKs and protein phosphatases (PPs) in eukaryotes [ 10 ]. First, we 
collected 1,855 known PKs and 347 known PPs from the scientifi c 
literature and several public databases, and then classifi ed these PKs 
and PPs into 10 groups with 149 families, and 9 groups with 29 
families, respectively. At the family level, we totally constructed 139 
and 27 Hidden Markov Model (HMM) profi les of PKs and PPs for 
searching more potential PKs and PPs, separately. Also, orthology 
searches were performed for PK and PP families without HMM pro-
fi les. Totally, EKPD contains 50,433 PKs and 11,296 PPs for 84 
eukaryotic species, including 22 plants [ 10 ]. 

 Traditionally, the identifi cation of phosphorylation sites 
(p-sites) with the approach of site-directed mutagenesis is labor- 
intensive, time-consuming, and costly. Recently progresses in 
high-throughput mass spectrometry (HTP-MS) technology and 
phosphopeptide enrichment techniques such as immobilized metal 
ion affi nity chromatography (IMAC) have enable the large-scale 
identifi cation of thousands of p-sites in a single experiment [ 11 ]. 
However, the regulatory PKs of these p-sites are still diffi cult to be 
identifi ed. In 2004, we developed a novel algorithm of group- 
based phosphorylation scoring (GPS) for predicting PK-specifi c 
substrates [ 12 ]. The GPS 1.0 could predict site-specifi c kinase–
substrate relations (ssKSRs) for 52 PK families [ 12 ], where GPS 
1.1 could predict ssKSRs for 216 PKs of 71 PK groups [ 13 ]. Later, 
we greatly improved the algorithm by developing the GPS 2.0 and 
2.1 software packages, which can predict PK-specifi c substrates for 
408 human PKs in hierarchy. Also, we renamed the GPS algorithm 
as group-based prediction system [ 14 ,  15 ]. More details on the 
GPS algorithm can be referred to [ 16 ]. Because only sequence 
profi les around p-sites were considered in GPS algorithms and 
various contextual factors such as kinase–substrate interaction, 
 co- localization and co-expression information can contribute addi-
tional specifi city for the phosphorylation in vivo [ 17 ], the sites pre-
dicted by GPS may be only phosphorylated in vitro but not in vivo. 
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Thus, we further developed a new algorithm of iGPS (in vivo 
GPS), by combining both sequence-based predictions and pro-
tein–protein interactions (PPIs) between PKs and substrates [ 18 ]. 
Although GPS and iGPS algorithms were developed mainly for 
predicting PK-specifi c substrates in mammalians, they can also be 
used in plants. 

 In this chapter, we took  Vitis vinifera  as an example to describe 
the computational methodologies for identifying PKs and kinase- 
specifi c substrates in plants (Fig.  1 ). First, we summarized how 
various HMM profi les of catalytic domains were constructed for 
known and curated PKs at the family level in EKPD database [ 10 ]. 
By downloading the proteome set of  Vitis vinifera , all potential 
PKs were identifi ed and classifi ed based on HMM profi les and 
ortholog search. For the identifi cation of kinase-specifi c substrates, 
the GPS software package [ 14 ,  15 ] was used for predicting ssKSRs 
of experimentally identifi ed p-sites in  Vitis vinifera . Furthermore, 
the iGPS algorithm was adopted to reduce false positive hits in 
predicted ssKSRs by including the PPI information between PKs 
and substrates [ 18 ].   

2    Materials 

       1.    The kinase.com database (  http://kinase.com/kinbase/
FastaFiles/    ), the best annotated database for protein kinases in 
eukaryotes [ 9 ]. All curated kinases were classifi ed into a 
 hierarchical structure with four levels, including group, family, 
subfamily, and single kinase.   

2.1  Data Resources

  Fig. 1    The schematic diagram of the computational pipeline for the identifi cation 
of PKs and kinase-specifi c substrates in  Vitis vinifera        

 

Bioinformatic Analysis of the Plant Phosphorylation

http://kinase.com/kinbase/FastaFiles/
http://kinase.com/kinbase/FastaFiles/


198

   2.    The proteome set of  Vitis vinifera  was downloaded from the 
FTP Server of Ensembl Plants (release version 21,   http://
plants.ensembl.org/    ) [ 19 ].   

   3.    The information of gene start and end of all proteins in  Vitis 
vinifera  was obtained from the BioMart service of Ensembl 
Plants (  http://plants.ensembl.org/biomart/martview    ) [ 19 ].   

   4.    The known phosphopeptides and phosphoprotein sequences of 
 Vitis vinifera were taken  from P 3 DB (release version 3.0,   http://
www.p3db.org/    ), a comprehensive database of phosphopro-
teomes for 9 plant species from 32 experimental studies [ 20 ].   

   5.    The PPI information and corresponding protein sequences of 
 Vitis vinifera were downloaded from STRING  (release version 
9.1,   http://string-db.org/    ), a widely used database contain-
ing precalculated PPIs [ 21 ].      

       1.    MUSCLE (version 3.8.31,   http://www.drive5.com/muscle/    ), 
an extensively used tool for multiple sequence alignment [ 22 ].   

   2.    The HMMER software package (version 3.0,   http://hmmer.
janelia.org/    ) [ 23 ]. Two programs including hmmbuild and 
hmmsearch were used in this study. The former can construct 
HMM profi les from the result of   multiple sequence align-
ment    s, whereas the latter can search an HMM profi le against 
the target sequence database for fi nding matches [ 23 ].   

   3.    CD-HIT (  http://weizhong-lab.ucsd.edu/cd-hit/    ), a useful 
tool for clustering similar sequences [ 24 ].   

   4.    The blastall program in the stand-alone package of NCBI 
BLAST (  http://blast.ncbi.nlm.nih.gov/Blast.cgi    ) [ 25 ].   

   5.    The GPS software package (version 2.1.2,   http://gps.bio-
cuckoo.org/    ), mainly for the prediction of kinase-specifi c 
p-sites or ssKSRs [ 14 ].   

   6.    The iGPS algorithm, which can be used for reducing false posi-
tive hits for potentially ssKSRs predicted by GPS [ 18 ].   

   7.    Cytoscape (version 2.8.3,   http://www.cytoscape.org/    ), an 
integrative platform designed for the analysis and visualization 
of complex networks [ 26 ].       

3    Methods 

       1.    The protein sequences and corresponding kinase catalytic 
domain sequences of 1,855 curated and pre-classifi ed PKs of 
 S. cerevisiae ,  C. elegans ,  D. melanogaster ,  Mus musculus , and 
 H. sapi ens were directly downloaded from the kinase.com 
database [ 9 ].   

2.2   Tools

3.1  The Construction 
of HMM Profi les 
for the PKs at 
the Family Level
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   2.    Based on the previously established rationales for PK classifi cation 
[ 9 ,  8 ], we manually classifi ed all collected PKs into 10 groups 
with 149 families.   

   3.    For 139 families with at least three PKs, we used MUSCLE 
[ 22 ] to align the kinase domain sequences for each family ( see  
 Note 1 ).   

   4.    Then with the multiple sequence alignment results, we used 
the hmmbuild program of HMMER [ 23 ] to construct 139 
HMM profi les for the PK families ( see   Note 2 ).   

   5.    For further characterization of more PKs with constructed HMM 
profi les, the program of hmmsearch [ 23 ] was used. To balance 
the specifi city and sensitivity of the PK prediction, we manually 
selected a cutoff value each family on the basis of the log-odds 
likelihood score calculated by hmmsearch ( see   Note 3 ).      

       1.    We downloaded the protein sequences of  Vitis vinifera  
from Ensembl Plants [ 19 ], and removed low-quality sequences 
( see   Note 4 ).   

   2.    For the purpose of eliminating the redundancy, we clustered 
proteins with a threshold of 100 % identity by CD-HIT [ 24 ]. 
If the identity of multiple proteins in a cluster was 100 %, 
CD- HIT only retained one sequence of them, while other pro-
tein sequences were discarded and not used for any further 
analysis.   

   3.    Then we applied the hmmsearch program [ 23 ] to search the 
nonredundant protein sequences of  Vitis vinifera  against all 
PK HMM profi les. If at least one log-odds likelihood score 
was ≥ the cutoff value of a PK HMM profi le, the protein was 
identifi ed as a PK.   

   4.    For the classifi cation, the calculated log-odds likelihood scores 
of multiple HMM profi les were compared, and a predicted PK 
was classifi ed into the family with the highest score.   

   5.    To avoid any redundancy of predicted and classifi ed PKs, we 
used the Ensembl Gene ID as the unique accession and the 
transcript with the most signifi cant E-value was represented for 
its corresponding gene.   

   6.    Because a single gene may generate multiple variant proteins 
with different Ensembl Gene IDs, we further obtained the 
chromosomal localization information of genes in  Vitis vinif-
era  from the Ensembl BioMart service [ 19 ], by selecting the 
“Protein stable ID”, “Gene start (bp)”, and “Gene end (bp)” 
of Gene Attributes. If the gene coordinates were identical or 
overlapped for multiple proteins, we only retained the longest 
one ( see   Note 5 ).   

3.2  Computational 
Identifi cation 
and Classifi cation 
of PKs in  Vitis vinifera 
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   7.    Furthermore, we conducted ortholog searches to identify 
additional PKs for the families without HMM profi les, by the 
blastall program [ 25 ] ( see   Note 6 ).   

   8.    The results of the HMM identifi cations and ortholog searches 
were merged together. Totally, we characterized 1,248 PKs 
with 9 groups and 49 families in  Vitis vinifera  (Table  1 ).

              1.    We downloaded 927 experimentally identifi ed phosphopep-
tides of  Vitis vinifera  from P 3 DB [ 20 ]. Then, we mapped these 
phosphopeptides to the nonredundant proteome set of  Vitis 
vinifera  by BLAST [ 25 ] and obtained 795 unique p-sites in 
539 phosphoprotein sequences.   

   2.    By defi ning a  phosphorylation site peptide  PSP( m ,  n ) as a phos-
phorylation residue of S, T, or Y surrounded by  m  upstream 
residues and  n  downstream residues [ 14 ,  15 ], we extracted all 
PSP(15, 15) items of known p-sites ( see   Note 7 ). And the PSP 
(15, 15) items were prepared in the FATSA format.   

   3.    Because the GPS tool was mainly developed for the prediction 
of kinase-specifi c p-sites in mammalians, the classifi cation infor-
mation of plant PKs was still not included. Thus, we manually 
selected predictors in GPS 2.1 for PKs at group and family levels 
if possible ( see   Note 8 ). Totally, we selected 25 GPS predictors 
for 1,086 PKs in  Vitis vinifera .   

   4.    The latest version of the GPS software package was down-
loaded and directly installed by double-clicking on the icon of 
the GPS program ( see   Note 9 ).   

3.3  Prediction 
of Kinase- Specifi c 
Substrates in  Vitis 
vinifera  by GPS

   Table 1  
  The distribution of 49 families in 9 groups for 1,248 classifi ed PKs from  Vitis vinifera    

 PK group  PK family 

  AGC   Akt, MAST, NDR, PDK1, PKA, AGC_Unique 

  CAMK   CAMK1, CAMKL, CAMK_Unique 

  CMGC   CDK, CLK, DYRK, GSK, MAPK, RCK, CMGC_Unique 

  CK1   CK1, CK1_Unique 

  STE   STE11, STE20, and STE_Unique 

  TK   TK_Unique 

  TKL   IRAK, MLK, TKL_Unique 

  Atypical   ABC1, PDHK, PIKK, RIO, BRD, G11, TAF1, Hisk 

  Other   Aur, BUB, Bud32, CDC7, Haspin, IRE, NAK, NEK, SCY, TLK, TTK, ULK, VPS15, 
WEE, WNK, Other_Unique 
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   5.    For the prediction of kinase-specifi c p-sites, we directly inputted 
all PSP (15, 15) items in the FATSA format into the text form 
of GPS, and selected all predictors in GPS with the default 
threshold ( see   Note 10 ). By left-clicking on the “submit” button, 
the prediction results can be generated soon (Fig.  2a ).    

   6.    For a larger data set, the kinase-specifi c p-sites can be predicted 
by the “Batch Predictor” in GPS. The PSP (15, 15) items in the 
FATSA format can be stored in a text fi le, and then inputted 
into the Batch Predictor (Fig.  2b ).   

   7.    After the prediction, we only retained the results in which the 
position of p-sites was 16. Based on the GPS predictor-PK 
relations of  Vitis vinifera , we assigned the exact PKs to all 
predictable p-sites ( see   Note 11 ).   

   8.    Totally, we predicted 171,241 ssKSRs between the 1,072 PKs 
and 483 substrates for the 674 p-sites, with an average of 254.1 
upstream PKs per p-site.      

       1.    We obtained the PPI information of  Vitis vinifera from the  
STRING database [ 21 ]. Then using BLAST [ 25 ], we mapped 
the protein sequences of interacting proteins in PPIs to the 
nonredundant proteome set of  Vitis vinifera . Totally, we got 
2,636,727 nonredundant PPI pairs in 18,070 proteins for 
 Vitis vinifera .   

   2.    The iGPS algorithm combined both the sequence-based pre-
dictions and contextual factors to reduce false positive 
 predictions [ 18 ] ( see   Note 12 ). Here, we reserved the GPS 
predictions only if the relations of PKs and their substrates 
were supported by PPIs from STRING.   

3.4  Prediction 
of In Vivo ssKSRs 
in  Vitis vinifera  by 
iGPS Algorithm

  Fig. 2    The user interface of the GPS software package. ( a ) The PSP (15, 15) items of known p-sites in the 
FATSA format can be directly inputted, and the predictions will be performed by left-clicking on the “submit” 
button. ( b ) The option of “Batch Predictor” allows users to import a preprepared fi le in the FATSA format for 
the prediction       
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   3.    By iGPS algorithm, we fi nally predicted 2,574 ssKSRs between 
737 PKs and 110 substrates for the 129 p-sites, with an aver-
age of 20.0 regulatory PKs per p-site.   

   4.    For the construction and visualization of kinase-substrate 
phosphorylation network (KSPN), we only counted multiple 
ssKSRs of a PK and a substrate as a single kinase–substrate rela-
tion (KSR). 6). In the KSPN, the nodes indicated PKs or sub-
strates, while the edges represented KSRs. As previously 
described [ 18 ], the KSPN is directional, and we defi ned two 
types of orientations including PK → Substrate (a PK phos-
phorylates a substrate which is not a PK), PK → PK (a PK phos-
phorylates a PK). The fi nal KSPN of  Vitis vinifera was visualized 
by  Cytoscape [ 26 ] and  contained 2,204 KSRs for 737 PKs and 
110 substrates  (Fig.  3 ).        

4    Notes 

     1.    If not specifi ed, the default parameters were selected for all 
bioinformatics tools used in this chapter.   

   2.    The HMM profi les for 139 PK families can be available at: 
  http://ekpd.biocuckoo.org/faq.php    .   

   3.    For a given protein sequence, the hmmsearch program [ 23 ] 
will compare it with each HMM profi le by calculating a log- 
odds likelihood score and an E-value. Because the E-value 

  Fig. 3    The directional KSPN of  Vitis vinifera  can be visualized by Cytoscape [ 26 ]. Multiple ssKSRs between a 
PK and a substrate was regarded as a single KSR [ 18 ]       
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depends on the size of inputted data set and will be not equal 
when different data sets are used, we choose a realistic constant 
value of the log-odds likelihood score as the threshold [ 10 ].   

   4.    Because the annotation quality of  Vitis vinifera  proteome is 
poor, we removed the protein sequences that had at least one 
“X” residue which indicates an unspecifi ed amino acid.   

   5.    By using the PK HMM profi le of each family, we totally char-
acterized 1,243 PKs in  Vitis vinifera .   

   6.    We adopted the computational approach of reciprocal best hit 
(RBH) [ 27 ], and used each member in PK families without 
HMM profi les to search in the proteome of  Vitis vinifera . 
Then the sequence with the highest score was chosen to search 
in the corresponding proteome of the curated PK. If the 
selected PK was also the best hit, the predicted sequence was 
regarded as a PK and classifi ed into the corresponding family. 
By this method, fi ve additional PKs were identifi ed.   

   7.    For p-sites that locate in N-terminal or C-terminal of protein 
sequences, we complemented the phosphopeptides to PSP 
(15, 15) with “*” characters if necessary.   

   8.    The basic hypothesis for assigning GPS predictors to PK groups 
or families is that similar PKs classifi ed in a same group or family 
would recognize similar SLMs of substrate modifi cation.   

   9.    The GPS 2.1.2 release was implemented in JAVA, and several 
installation packages were constructed to support three major 
Operating Systems including Windows, Mac and Linux/Unix. 
In this chapter, the fi le “GPS_2.1.2_windows_20120913.exe” 
was downloaded.   

   10.    In GPS, the threshold values were selected based on the false 
positive rates (FPRs), which were estimated from a randomly 
generated dataset containing 200,000 PSP (7, 7) peptides [ 14 , 
 15 ]. For serine/threonine PKs, the high, medium, and low 
thresholds were chosen with FPRs of 2, 6, and 10 %. For tyro-
sine PK, the high, medium, and low thresholds were selected 
with FPRs of 4, 9, and 15 %. The medium thresholds were 
adopted as the default parameters.   

   11.    Because the real p-sites are only a small proportion of total 
S/T or Y residues in protein sequences, the authors don’t rec-
ommend the ab initio prediction of kinase-specifi c p-sites 
directly from the primary sequences. Instead, the inclusion of 
experimentally identifi ed p-sites and the prediction of  potential 
PKs for these real p-sites will greatly reduce the false positive 
predictions.   

   12.    It was widely adopted that SLMs around the p-sites provide 
primary specifi city for PK recognition [ 14 ,  15 ]; however, a 
number of additional contextual factors, such co-localization, 
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coexpression, co-complex, and physical interaction of the PKs 
with their substrates, contribute additional modifi cation speci-
fi city in vivo [ 17 ,  18 ]. The PPI information was considered as 
a major contextual fi lter in iGPS algorithm.         
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